ar X iv : m at h / 02 11 06 4 v 1 [ m at h . R A ] 4 N ov 2 00 2 NON - COMMUTATIVE CREPANT RESOLUTIONS MICHEL
نویسنده
چکیده
We introduce the notion of a " non-commutative crepant " resolution of a singularity and show that it exists in certain cases. We also give some evidence for an extension of a conjecture by Bondal and Orlov, stating that different crepant resolutions of a Gorenstein singularity have the same derived category.
منابع مشابه
ar X iv : m at h / 04 11 06 2 v 1 [ m at h . O A ] 3 N ov 2 00 4 On automorphisms of type II Arveson systems ( probabilistic approach )
A counterexample to the conjecture that the automorphisms of an arbitrary Arveson system act transitively on its normalized units.
متن کاملar X iv : h ep - e x / 02 11 06 9 v 1 2 8 N ov 2 00 2 Jet Production at CDF Mario Mart́ınez
متن کامل
ar X iv : m at h / 06 11 83 1 v 1 [ m at h . R A ] 2 7 N ov 2 00 6 CLASSIFICATION OF 4 - DIMENSIONAL NILPOTENT COMPLEX
The Leibniz algebras appeared as a generalization of the Lie algebras. In this work we deal with the classification of nilpotent complex Leibniz algebras of low dimensions. Namely, the classification of nilpotent complex Leibniz algebras dimensions less than 3 is extended to the dimension four.
متن کاملar X iv : m at h / 06 11 45 2 v 1 [ m at h . A G ] 1 5 N ov 2 00 6 UNIRATIONALITY OF CERTAIN SUPERSINGULAR K 3 SURFACES IN CHARACTERISTIC
We show that every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is unirational.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002